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Phase I: Under-ventilated fire followed by flame extinction due to oxygen 
starvation
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Phase II: Vent opening, fuel-air mixing and formation of a flammable 
cloud
Phase II: Ignition followed by a deflagration and fireball event
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• Advanced CFD solver oriented towards fire applications; 
developed by NIST, USA (http://fire.nist.gov/fds)

• Main features:
Large eddy simulation (LES) approach for turbulence
Low Mach number formulation
Numerical methods: finite difference scheme (2nd order); predictor-
corrector time integrator (2nd order); rectangular Cartesian grid; multi-
block grid.
Software engineering: public domain; open source (Fortran 90); PC-
friendly (Windows/Linux/Unix OS) and parallel (MPI-based).

• Current combustion modeling capability: non-premixed 
combustion

• Objective: adapt FDS to treat ignition and partially-premixed
combustion events (flash fires, fireballs, mixed modes)

Initial developments in FDS v4; current developments in FDS v5

Fire Dynamics Simulator (FDS)



Slide 4

• Model expressions for the LES-filtered HRR [W/m3]:

Diffusion Flame Modeling
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• Flame extinction due to air vitiation

Flammability diagram (for diffusion flames)
in terms of the oxidizer stream properties

Diffusion Flame Modeling
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• Modified expression with flame extinction capability:

Equilibrium chemistry model expression corrected by a flame extinction 
factor FEF

Diffusion Flame Modeling
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• Transport equation for the LES-filtered progress variable:
(Boger et al., Proc. Combust. Inst. 1998; Boger & Veynante, 2000)
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• Corresponding expression for the HRR [W/m3]:
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• Adaptation of the filtered reaction progress variable approach 
to treat deflagrations in non-homogeneous fuel-air mixtures

• Coupling of the deflagration and diffusion burning capabilities 
to treat partially-premixed combustion events

Coupling Interface Between
Premixed and Non-Premixed Combustion
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• The variations in fuel-air mixture composition are described 
using the LES-filtered mixture fraction   :Z~
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• The variations of laminar flame speed with mixture strength are 
described using a presumed polynomial function:

Input parameters (fuel properties): ZLFL, ZUFL, Zst, SL,st

stZLFLZ

UFLZ
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Coupling Interface Between
Premixed and Non-Premixed Combustion
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• Modified expression for the HRR [W/m3]:

Non-homogeneous premixed combustion:
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• Two-variable description of the reactive mixture composition 
(state relationships):
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• Basic expressions for the HRR [W/m3]:

Premixed combustion:

Non-premixed combustion:
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• Identification of premixed and non-premixed combustion 
modes (Domingo, Vervisch & Bray, Combust. Theory Modelling 2002)

Flame index:

Premixed flamelets: FI = 1 ;         Diffusion flamelets: FI = 0
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• New expression for the HRR (Domingo, Vervisch & Bray, Combust. 
Theory Modelling 2002)

Partially-premixed combustion:

where fign is an ad hoc ignition factor
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• Grid resolution requirement of the partially-premixed 
combustion model formulation

Premixed flame must remain smooth on the computational grid
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• Simplified conditions: one-dimensional plane configuration, 
initially quiescent gas, homogeneous fuel-air mixture

Uniform mesh
(500×10×10) = 50,000

Open boundaries
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• Effect of the LES filter-to-grid length scale ratio on the stability 
and accuracy of the predicted flame speed
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• Grid resolution requirement of the partially-premixed 
combustion model formulation

Premixed flame must remain thin in mixture fraction space
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• Simplified conditions: one-dimensional plane configuration, 
initially quiescent gas, non-homogeneous fuel-air mixture

Uniform mesh
(800×5×5) = 20,000
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• Time variations of global HRR (premixed/diffusion 
components)

Homogeneous
stoichiometric
premixed flame
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Coupling Interface: Turbulent Flame Test
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• Model problem: ignition of a fuel vapor cloud in a sealed 
compartment (FDS v4)

Uniform mesh
(160×160×120) = 3,072,000
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Coupling Interface: Turbulent Flame Test
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• Time variations of global HRR (premixed/diffusion flames)

short time dynamics
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• Location and structure of premixed and non-premixed flames at 
t = 2.5 s

Initiation of partially-premixed combustion

Premixed Non-premixed

Buoyant puff
(vertical spread)

Expanding flame 
kernel (horizontal 
spread)

Coupling Interface: Turbulent Flame Test
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• Location and structure of premixed and non-premixed flames at 
t = 3 s

Partially-premixed combustion

Premixed Non-premixed

Buoyant puff 
impinging on 
ceiling wall

Coupling Interface: Turbulent Flame Test
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• Location and structure of premixed and non-premixed flames at 
t = 3.5 s

Partially-premixed combustion

Premixed Non-premixed

Coupling Interface: Turbulent Flame Test
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• Location and structure of premixed and non-premixed flames at 
t = 8 s

Depletion of flammable fuel (due to combustion and pre-mixing) and 
transition to diffusion burning (attached to the fuel source)

Non-premixed

Coupling Interface: Turbulent Flame Test

Diffusion flame 
located above 
fuel source

(light-back)



Slide 29

Coupling Interface: Turbulent Flame Test

• Time variations of global HRR (premixed/diffusion flames)

long time dynamics

global flame 
extinction

local flame 
extinctions
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• Location and structure of non-premixed flame at t = 60 and 80 s
Flame extinction due to oxygen starvation

t = 80 s

Coupling Interface: Turbulent Flame Test

t = 60 s
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Validation Tests: Simulation of Backdraft
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• Reduced-scale backdraft experiment (C. M. Fleischmann, 1994)
(FDS v5)

Compartment
(2.4×1.2×1.2) m3

Uniform mesh
(96×48×48) = 221,184
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diffusion flame 

extinction

Phase IIPhase I

• Time variations of global HRR (premixed/diffusion flames)

Validation Tests: Simulation of Backdraft
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• Phase 2: conditions at time of hatch opening

Validation Tests: Simulation of Backdraft

Mixture Fraction Temperature

flammable region
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• Phase 2: ignition at time t = 3.7 s after hatch opening 
(Experiment: ignition delay is 6.7 s)

Validation Tests: Simulation of Backdraft

Heat release rate

Ignition at the 
spark ignitor

Mixture Fraction

growth of flammable region
(gravity current)
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• Phase 2: flame propagation across compartment (duration ~ 3.8 
s)

Validation Tests: Simulation of Backdraft

Heat release rateHeat release rate

time t = 5.5 s after hatch opening time t = 7.5 s after hatch opening
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• Phase 2: diffusion flame at the vent (duration ~ 40s)

Validation Tests: Simulation of Backdraft

Heat release rateHeat release rate

time t = 31 s after hatch opening time t = 40 s after hatch opening
(extinction due to fuel depletion)
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• One-step combustion model
New FDS variables Z1, Z3

Partially-premixed combustion expression of reaction rate

Modified Formulation for FDS v5
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• One-step combustion model
Deflagration model

Modified Formulation for FDS v5
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• One-step combustion model
State relationships

Modified Formulation for FDS v5
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• A partially-premixed combustion (PPC) model has been 
implemented into FDS v5. The PPC formulation is based on:

A mixture fraction model (featuring a vitiated air flame extinction 
capability) to describe non-premixed combustion
A reaction progress variable model to describe premixed combustion
A coupling interface based on the concept of a flame index

• The performance of the PPC model has been evaluated in a 
series of verification tests (e.g. laminar flame propagation in 
homogeneous/inhomogeneous fuel-air mixtures; transient 
ignition followed by a deflagration/diffusion-flame sequence 
inside a closed compartment)

• Current work: validation tests based on comparisons with 
experimental data (indoor backdraft events; large-scale outdoor 
LNG fires)

Conclusion
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